
Time Integration ofthe
SpaceTime Kinetics
Equations

1
N THIS CHAPTER, We will explore some of the techniques

usee! in practice to integrate in time the equations of space­

time kinetics. We have seen in the previous chapter how the

spatial integration leads to the semi-discrete formulation of

these equations. Also, even though we have used mesh centered finite

differences, the techniques described here could be applied without

change to other discretisations, such as nodal methods for example.

Theta Method

The semi-discrete form of the space-time kinetics equations (116) are

the starting point of this analysis. The structure of the [H] is also

detailed on Figure 10, page 185. In this section, in order to simplify
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matters, we will only deal with the case where a single family of delayed

precursors is modeled. Generalization to more families is straightfor­

ward.

We can write the matrix form in the following fashion,

We apply the e method to this equation, using a different value of e
for the fluxes and for the precursors. We chose a formulation in which

the eP and the eD
are independent of space, but can be different

from each other. Recall from chapter 11, Numericallnt~gration Tech­

niques, page 123, that we can include the implicit, the explicit and the

Crank-Nicholson schemes just by changing th~ value of the e. We

thus have
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[
[q,r + 11_ [[q,r1 =

[er+ IJ [erJ

189

Solving this last equation might seem difficult on first hand, because of

the very large number of unknowns in the problem. It is however pos­

sible to eliminate the eR
+ I from the flux equations.

To do this, we rewrite the preceding system in two parts, one for the

fluxes and one for the precursor concentrations, noting that the H 12

and the H22 do not depend on time, since they only involve the Ai' the

group velocities and the volumes. We get

q,R + 1_q,R = [AtHfl+ 18PJq,R + 1+ At [H I2] [8~eR + 1
(EQ 117)

+ ~tHfl [I _8 PJJq,R + At [H 12] [I _8~eR
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We isolate Cn + 1 from this last equation to get

cn+1 = [I _ ~tH2201-[ [I + ~tH22(I _ 0d~Cn

+ [I - AtHzz0
dr[ [AtHqt 10PJ<j>n +1

+ [I - ~tH22efl[AtH£[ [I _ epJ]q,n

We then substitute this result in the flux equation (117),

(EQ 118)

190

~ - AtHzze1-
1

[1 + AtHzz(1 - ed~Cn

+ ~t[H12J [e~ + [1- AtH220~ -I [~tHql+ le~q,n+1

+ [I - AtHzz0fl [AtHq[ [I _ epJ]q,n
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and. regrouping terms together,
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,; {I + dt [H ,21ed
{dtHr, [I - epJ + [I - dlH22edJ-I ~lH£1 [I _0 pJ]}}q,"

+ dt[H I2Jed[l_ dtH200~ -'[I + dtH22(l- ed)J + dt[H I2] [I _e~cn

We define the matrix

rl"+1 PO-, = [I - AtHrt 1e

-AtH ed(I - AtH edJ-
1
AtH" .l-leF]12 22 21

and the vector

[s]" = [I + AtHrt led(l_ AtH22ed)-1 AtHMI - eP)

+ AtHYr(1 - eP)][ <1>]"

+ (MH I2e
d(I - AtH22e

d)-I(1 + AtH22(I - ed»

+ AtHMI - e~) )[e]"

Finally, the flux equations can be put in the ferm

Note that evaluating the vector [S] (n) does not present any particular

difficulties, since the matrix inversions appearing in it involve only
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diagonal matrices. Furthermore, this vector depends only on the flux

vectors <t>(n) and on the precursor vector en. evaluated at the previ­

ous time interval, and are therefore available for the computation.

[
(n + I)

Constructing the matrix AJ does not present any difficulty

either, since the inverses that appear in its expression involve only

diagonal matrices. The matrix [A](n + I) will have the same structure

as H u . It will be tIi-diagonal for I-D problems, penta-diagonal for 2­

D problems, and hepta-diagonal for 3-D problems.

Consequently, the evaluation of the fluxes only need solving a problem

involving these matrix structures. LU decomposition could be used in

I-D, whereas iterative methods such as Gauss-Seidel, SOR, CCSI, etc.

would be used ill 3-D. Methods such as ADI decomposition could also

be used in such cases.

n+l ul n+lOnce the fluxes <\> have been calc ated, the precursors e
could be determined by slightly rearranging equation (lIS),

[I + LltH22(I - ed~ en

+ [LltH~1 [I _epJ] <\In
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Exponential Transforms
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The fluxes vary quite fast during a transient.MallY times, the time
-4 -5

intervals must be of the order of 10 and even 10 seconds). There

is thus much interest for any approaches that would lead to significant

reduction of the time step. The quasistatic method is one of them, per­

mitting longer intervals between the computation of the spatial solu­

tions.

Another method is that of the exponential transform. This supposes

that the fluxes and the precursors undergo quasi-exponential varia­

tio11S in time. The idea is to remove this exponential behavior, and to

deal with vQriables that will va;:y much more slowly than the original

ones. Byway ofconsequence, a much longer time step could be used.

To show this. we introduc.e new variables, 'fJ and t. related to the

fluxes and to the precursor concentrations by the transformations

[<I>J - eXP([n~t)[11l

[CJ = exp([n~Jt)[~J
(EQ 119)

These should vary more slowly than the initial variables. Note that the

[n~ and [ng] are diagonal matrices, and that the exponential of

these matrices are also diagonal matrices. We only have to find the dif­

ferential equations governing [,.J and [tJ .To do so, we start from

the system

'.
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in which we substitute (119),
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,

194

The left hand side of this last equation can be written

so that

lexp([np]t) [oj Ji.[[~J
l [oJ exp([n~] t at [to]

= lr[HJlI-exp([np]t)[np] [HJ'2 1[[~1
[HJ2. [HJ22 - exp([n:]t)[n:]J [t,]1
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Multiplying by the inverse of the matrix exponential

We can rewrite this last system in the form

195

(EQI20)

:t[~J ~ [H~ [j
The elements of matrix [H~ are obtained from the expressions found

in equation (120). Since we have a system having the saIne structure as

the initial system, the methods introduced in the previous section can

be used to perform the temporal integration.

Frequency Determination

There is a problem to be addressed, that of the way to determine the

frequencies [Up] and [U~] .The temporal behavior of the fluxes and

the precursors is not exactly an exponential during most of complex

transients. There is therefore no frequencies that will permit following

the fluxes exactly during a given time interval.

Approximate methods to determine the frequencies thus have to be

sought. A simple and often used technique is to calculate the frequen­

cies for the time interval tn < t < tn + 1 in the following way,
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and

UP "kg,IJ := .llo ("';'ijk)
~t g.l.o c: I

"'g,l)\(

196

nd _ 11 (C~'ijk)"e,ijk - .og "0-1ut '-- "ke, IJ

This is to suppose that the frequencies used in a given time interval are

those that were present in the preceding time interval. This approxi­

mation works relatively well, except when reactivity devices move in

discontinuous fashion, for example when they start or stop moving. In

such circum.stances, the calculat~d frequencies will not be very good,

and smaller time steps will be necessary.
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